Data Mining for Tweet Sentiment Classification
21
%
993 Kč 1 250 Kč
Sleva až 70% u třetiny knih
The goal of this work is to classify short Twitter messages with respect to their sentiment using data mining techniques. Twitter messages, or tweets, are limited to 140 characters. This limitation makes it more difficult for people to express their sentiment and as a consequence, the classification of the sentiment will be more difficult as well. The sentiment can refer to two different types: emotions and opinions. This research is solely focused on the sentiment of opinions. These opinions can be divided into three classes: positive, neutral and negative. The tweets are then classified with an algorithm to one of those three classes. Known supervised learning algorithms as support vector machines and naive Bayes are used to create a prediction model. Before the prediction model can be created, the data has to be pre-processed from text to a fixed-length feature vector. The features consist of sentiment-words and frequently occurring words that are predictive for the sentiment. The learned model is then applied to a test set to validate the model.
Autor: | de Groot, Roy |
Nakladatel: | LAP Lambert Academic Publishing |
Rok vydání: | 2012 |
Jazyk : | Angličtina |
Vazba: | Paperback / softback |
Počet stran: | 108 |
Mohlo by se vám také líbit..
-
Organizational Reputation and Public ...
Leerapan, Borwornsom
-
Software Project Management Made Easy
Biradar (Patil), Jyoti G.
-
\"Don\'t Bother Asking God ...
Vaughn, Charles Lee
-
Investigating Challenges Affecting Co...
Lemessa, Keba
-
100 let issledowaniü woli. Kniga perwaq
Batyrshina, Al'fiq
-
Effect of post emergence herbicide
Sharma, Kalpana
-
Development Diplomacy and China - Nig...
Al-Ameen, Abdulqadir
-
The Role of Traditional Leadership in...
Ncube, Mthuthukisi
-
Elaeagnus latifolia L. conservation: ...
Bhattacharyya, Liza Handique
-
Event Aggregation
Rohadiya, Kanudan