Mining of Massive Datasets
27
%
1176 Kč 1 603 Kč
Zboží skladem, ihned k odeslaní
Pokud objednám nyní, kdy zboží dostanu
Sleva až 70% u třetiny knih
Now in its second edition, this book focuses on practical algorithms for mining data from even the largest datasets.
Autor: | Leskovec, Jure (Stanford University, California); Rajaraman, Anand; Ullman, Jeffrey David (Stanford University, Californ |
Nakladatel: | Cambridge University Press |
ISBN: | 9781107077232 |
Rok vydání: | 2014 |
Jazyk : | Angličtina |
Vazba: | Hardback |
Počet stran: | 476 |
Mohlo by se vám také líbit..
-
Mathematics for Machine Learning
Deisenroth, Marc Peter (University College London); Faisal, A. Aldo (Imperial College London); Ong, Cheng Soon
-
Quantum Computing for Computer Scien...
Yanofsky, Noson S.
-
A Hands-On Introduction to Data Science
Shah, Chirag (University of Washington)
-
Industry Unbound
Waldman, Ari Ezra (Northeastern University, Boston)
-
Bandit Algorithms
Lattimore, Tor (University of Alberta); Szepesvari, Csaba (University of Alberta)
-
Machine Learning with Neural Networks
Mehlig, Bernhard (Goeteborgs Universitet, Sweden)
-
How to Write Good Programs
Stevens, Perdita
-
The Discrete Mathematical Charms of P...
Applegate, David L.; Bixby, Robert E.; Chvatal, Vasek; Cook, William J.
-
Integer Linear Programming in Comput...
Gusfield, Dan (University of California, Davis)
-
Sentiment Analysis
Liu, Bing
-
Game Theory Basics
Von Stengel, Rudiger
-
Data-Driven Science and Engineering
Duriez, Thomas; Brunton, Steven L.; Noack, Bernd R.
-
Cambridge International AS & A L...
Piper, Tony
-
Computer Age Statistical Inference, S...
Efron, Bradley
-
Modern Statistics for Modern Biology
Holmes, Susan (Stanford University, California); Huber, Wolfgang
-
Mastering Mathematical Finance
Capinski, Maciej J.; Kopp, Ekkehard