Adversarial Machine Learning
2387 Kč
Sleva až 70% u třetiny knih
Combining essential theory and practical techniques for analysing system security, and building robust machine learning in adversarial environments, as well as including case studies on email spam and network security, this complete introduction is an invaluable resource for researchers, practitioners and students in computer security and machine learning.
Autor: | Amato, Joseph Anthony |
Nakladatel: | Cambridge University Press |
ISBN: | 9781107043466 |
Rok vydání: | 2017 |
Jazyk : | Angličtina |
Vazba: | Hardback |
Počet stran: | 338 |
Mohlo by se vám také líbit..
-
The Frequency of Magic
Amato, Joseph Anthony
-
Kitch
Amato, Joseph Anthony
-
Mining of Massive Datasets
Leskovec, Jure (Stanford University, California); Rajaraman, Anand; Ullman, Jeffrey David (Stanford University, Californ
-
Learning Scientific Programming with ...
Hill, Christian
-
Mathematics for Machine Learning
Deisenroth, Marc Peter (University College London); Faisal, A. Aldo (Imperial College London); Ong, Cheng Soon
-
Machine Learning for Asset Managers
De Prado, Lopez
-
Quantum Computing for Computer Scien...
Yanofsky, Noson S.
-
A/AS Level Computer Science for WJEC...
Surrall, Alistair; Hamflett, Adam
-
Foundations of Cryptography: Volume ...
Goldreich, Oded
-
Purely Functional Data Structures
Okasaki, Chris (Columbia University, New York)
-
A Hands-On Introduction to Data Science
Shah, Chirag (University of Washington)
-
How to Write Good Programs
Stevens, Perdita
-
Industry Unbound
Waldman, Ari Ezra (Northeastern University, Boston)
-
Sentiment Analysis
Liu, Bing
-
Machine Learning with Neural Networks
Mehlig, Bernhard (Goeteborgs Universitet, Sweden)
-
Integer Linear Programming in Comput...
Gusfield, Dan (University of California, Davis)