Variational Bayesian Learning Theory
3143 Kč 3 243 Kč
Sleva až 70% u třetiny knih
Designed for researchers and graduate students in machine learning, this book introduces the theory of variational Bayesian learning, a popular machine learning method, and suggests how to make use of it in practice. Detailed derivations allow readers to follow along without prior knowledge of the specific mathematical techniques.
Autor: | Nakajima, Shinichi (Technische Universitat Berlin); Watanabe, Kazuho; Sugiyama, Masashi (University of Tokyo) |
Nakladatel: | Cambridge University Press |
ISBN: | 9781107076150 |
Rok vydání: | CZE |
Jazyk : | Čeština |
Vazba: | CZE |
Počet stran: | CZE |
Mohlo by se vám také líbit..
-
Mining of Massive Datasets
Leskovec, Jure (Stanford University, California); Rajaraman, Anand; Ullman, Jeffrey David (Stanford University, Californ
-
Machine Learning for Asset Managers
De Prado, Lopez
-
Mathematics for Machine Learning
Deisenroth, Marc Peter (University College London); Faisal, A. Aldo (Imperial College London); Ong, Cheng Soon
-
Data-Driven Science and Engineering
Duriez, Thomas; Brunton, Steven L.; Noack, Bernd R.
-
Quantum Computing for Computer Scien...
Yanofsky, Noson S.
-
Game Theory Basics
Von Stengel, Rudiger
-
Modern Statistics for Modern Biology
Holmes, Susan (Stanford University, California); Huber, Wolfgang
-
Mastering Mathematical Finance
Capinski, Maciej J.; Kopp, Ekkehard
-
Computer Age Statistical Inference, S...
Efron, Bradley
-
Machine Learning Refined
Watt, Jeremy (Northwestern University, Illinois); Borhani, Reza (Northwestern University, Illinois); Katsaggelos, Aggelo
-
A Level Comp 2 Computer Science OCR
Surrall, Alistair; Hamflett, Adam
-
Model-Based Clustering and Classific...
Bouveyron, Charles; Celeux, Gilles; Murphy, T. Brendan (University College Dublin); Raftery, Adrian E. (University of Wa
-
Introduction to Applied Linear Algebra
Boyd, Stephen P.
-
Foundations of Cryptography: Volume ...
Goldreich, Oded
-
Purely Functional Data Structures
Okasaki, Chris (Columbia University, New York)
-
Learning Scientific Programming with ...
Hill, Christian