Termín obdržení zásilky
Dodací doba je ovlivněna statním svátkem ( 28.09 )
Česká pošta Středa 01.10
PPL Středa 01.10
Osobní odběr Čtvrtek 02.10
Termíny jsou pouze orientační a mohou se lišit podle zvoleného typu platby. O Průběhu zásilky Vás budeme informovat e-mailem.
Při nákupu většího množství produktů negarantujeme dodání do zobrazeného data

Privacy Preserving Data Mining - Issues & Techniques

Privacy Preserving Data Mining - Issues & Techniques
21 %

1213  Kč 1 528 Kč

Sleva až 70% u třetiny knih
Huge volume of data from domain specific applications such as medical, financial, telephone, shopping records and individuals are regularly generated. Sharing of these data is proved to be beneficial for data mining application. Since data mining often involves data that contains personally identifiable information and therefore releasing such data may result in privacy breaches. On one hand such data is an important asset to business decision making by analyzing it. On the other hand data privacy concerns may prevent data owners from sharing information for data analysis. In order to share data while preserving privacy, data owner must come up with a solution which achieves the dual goal of privacy preservation as well as accuracy of data mining task mainly clustering and classification. Existing techniques for privacy preserving data mining is designed for traditional static data sets and are not suitable for data streams. Privacy preserving data stream mining is an emerging research area in the field of privacy aware data mining.
Autor:
Nakladatel: Scholar's Press
Rok vydání: 2014
Jazyk : Angličtina
Vazba: Paperback / softback
Počet stran: 120