Practical Smoothing
1623 Kč
Sleva až 70% u třetiny knih
\n
P-splines are widely used in statistics and machine learning for smoothing out noise in data and to avoid overtraining. This practical guide covers theory and a range of standard and non-standard applications with code in R for professionals and researchers looking for a simple, flexible and powerful smoothing tool.
\nAutor: | Eilers, Paul H.C. (Erasmus Universiteit Rotterdam); Marx, Brian D. (Louisiana State University) |
Nakladatel: | Cambridge University Press |
ISBN: | 9781108482950 |
Rok vydání: | 2021 |
Jazyk : | Angličtina |
Vazba: | pevná |
Počet stran: | 208 |
Mohlo by se vám také líbit..
-
Quantum Computing for Computer Scien...
Yanofsky, Noson S.
-
Cambridge International AS & A L...
Piper, Tony
-
Mathematics for Machine Learning
Deisenroth, Marc Peter (University College London); Faisal, A. Aldo (Imperial College London); Ong, Cheng Soon
-
Mining of Massive Datasets
Leskovec, Jure (Stanford University, California); Rajaraman, Anand; Ullman, Jeffrey David (Stanford University, Californ
-
Interchange Level 2 Teacher´s Edition...
Richards, Jack C.
-
How to Write Good Programs
Stevens, Perdita
-
Industry Unbound
Waldman, Ari Ezra (Northeastern University, Boston)
-
Learning Scientific Programming with ...
Hill, Christian
-
Sentiment Analysis
Liu, Bing
-
Machine Learning with Neural Networks
Mehlig, Bernhard (Goeteborgs Universitet, Sweden)
-
A Hands-On Introduction to Data Science
Shah, Chirag (University of Washington)
-
The Discrete Mathematical Charms of P...
Applegate, David L.; Bixby, Robert E.; Chvatal, Vasek; Cook, William J.
-
Game Theory Basics
Von Stengel, Rudiger
-
Integer Linear Programming in Comput...
Gusfield, Dan (University of California, Davis)
-
Mastering Mathematical Finance
Capinski, Maciej J.; Kopp, Ekkehard
-
Computer Age Statistical Inference, S...
Efron, Bradley