Anonymizing Health Data
7
%
786 Kč 848 Kč
Sleva až 70% u třetiny knih
With this practical book, you will learn proven methods for anonymizing health data to help your organization share meaningful datasets, without exposing patient identity. Leading experts Khaled El Emam and Luk Arbuckle walk you through a risk-based methodology, using case studies from their efforts to de-identify hundreds of datasets.
| Autor: | El Emam, Khaled; Arbuckle, Luk |
| Nakladatel: | O'Reilly Media, Inc, USA |
| ISBN: | 9781449363079 |
| Rok vydání: | 2013 |
| Jazyk : | Angličtina |
| Vazba: | Paperback |
| Počet stran: | 150 |
Mohlo by se vám také líbit..
-
Practical Synthetic Data Generation
El Emam, Khaled; Arbuckle, Luk
-
Bootstrap
Spurlock, Jake
-
Python Pocket Reference
Mark Lutz
-
Effective Modern C++
Meyers Scott
-
US For Beginners
Marsh, Joel
-
Understanding the Linux Kernel
Bovet, Daniel P.; Cesati, Marco
-
This is Service Design Doing
Stinkdorn, Marc; Edgar Hormess, Markus; Lawrence, Adam; Schneider, Jakob
-
Python Cookbook
David M. Beazley
-
Cooking for Geeks, 2e
Potter, Jeff
-
Java 8 Lambdas
Warburton, Richard
-
Designing Data-Intensive Applications
Kleppmann, Martin
-
Product Roadmaps Relaunched
Richard Banfield, C. Todd Lombardo, Trace Wax
-
Advanced Analytics with Spark
Sandy Ryza, Uri Laserson, Sean Owen, Josh Wills
-
Learning Agile
Stellman, Andrew
-
Introduction to Machine Learning wit...
Guido, Sarah; Mueller, Andreas C.
-
Cloud Native Java
Gary Mak, Daniel Rubio, Josh Long
