Pattern Recognition and Machine Learning
2361 Kč
Odesíláme do 5 až 7 dní
Sleva až 70% u třetiny knih
This is the first textbook on pattern recognition to present the Bayesian viewpoint. It presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible, and it uses graphical models to describe probability distributions.
Autor: | Bishop, Christopher M. |
Nakladatel: | Springer-Verlag New York Inc. |
ISBN: | 9780387310732 |
Rok vydání: | 2006 |
Jazyk : | Angličtina |
Vazba: | Hardback |
Počet stran: | 738 |
Mohlo by se vám také líbit..
-
Neural Networks for Pattern Recognition
Bishop, Christopher M.
-
A Course in Mathematical Statistics a...
Bhattacharya, Rabi; Waymire, Edward C.
-
Mathematics and Its History
Stillwell, John
-
A First Course in Bayesian Statistica...
Peter Hoffmann
-
Algebraic Geometry
Hartshorne, Robin
-
An Introduction to Homological Algebra
Rotman, Joseph J.
-
Mathematics and Politics
Alan Taylor
-
Groups and Symmetry
Armstrong, Mark A.
-
Geometry
Borovik, Alexandre V.; White, Neil; Gelfand, Israel M.
-
Problems in Analytic Number Theory
Ramamurty, G.
-
Basic Business Statistics
Alan Dean Foster
-
Complex Analysis
Bak, Joseph; Newman, Donald J.
-
The Book of Numbers
Berlekamp, Elwyn R.; Conway, Professor John H.; Guy, Richard K.
-
Representation Theory
Rivers, Patrick (University of New Haven, USA); Fulton, William (LaGuardia Community College, USA)
-
Basic Mathematics
Lang, Serge
-
Undergraduate Analysis
Lang, Serge