Deep Neural Networks in a Mathematical Framework
1542 Kč
Sleva až 70% u třetiny knih
This SpringerBrief describes how to build a rigorous end-to-end mathematical framework for deep neural networks. In particular, the authors derive gradient descent algorithms in a unified way for several neural network structures, including multilayer perceptrons, convolutional neural networks, deep autoencoders and recurrent neural networks.
Autor: | Caterini, Anthony L.; Chang, Dong Eui |
Nakladatel: | Springer International Publishing AG |
ISBN: | 9783319753034 |
Rok vydání: | 2018 |
Jazyk : | Angličtina |
Vazba: | Paperback / softback |
Počet stran: | 84 |
Mohlo by se vám také líbit..
-
Inside PixInsight
Keller, Warren A.
-
Fundamentals of Java Programming
Ogihara, Mitsunori
-
Algorithms for Data Science
Steele, Brian; Chandler, John; Reddy, Swarna
-
Medical Robotics
Schweikard, Achim; Ernst, Floris
-
Cryptography Made Simple
Blake Ian, Seroussi Gadiel, Smart Nigel
-
UML @ Classroom
Seidl, Martina
-
New Horizons for a Data-Driven Economy
-
Eye Tracking Methodology
Duchowski, Andrew T.
-
Cinderella\'s Stick
Tzitzikas, Yannis; Marketakis, Yannis
-
Requirements Engineering
Dick, Jeremy
-
Cloud Computing
Sehgal, Naresh Kumar; Bhatt, Pramod Chandra P.
-
Simulation and Inference for Stochas...
Iacus, Stefano M.; Yoshida, Nakahiro
-
Designing with Xilinx (R) FPGAs
-
Utility Communication Networks and S...
-
Principles of Forensic Audio Analysis
Maher, Robert C.
-
Strategy in Airline Loyalty
De Boer, Evert R.